Robustness of parameter and standard error estimates against ignoring a contextual effect of a subject-level covariate in cluster-randomized trials
نویسندگان
چکیده
In experimental research, it is not uncommon to assign clusters to conditions. When analysing the data of such cluster-randomized trials, a multilevel analysis should be applied in order to take into account the dependency of first-level units (i.e., subjects) within a second-level unit (i.e., a cluster). Moreover, the multilevel analysis can handle covariates on both levels. If a first-level covariate is involved, usually the within-cluster effect of this covariate will be estimated, implicitly assuming the contextual effect to be equal. However, this assumption may be violated. The focus of the present simulation study is the effects of ignoring the inequality of the within-cluster and contextual covariate effects on parameter and standard error estimates of the treatment effect, which is the parameter of main interest in experimental research. We found that ignoring the inequality of the within-cluster and contextual effects does not affect the estimation of the treatment effect or its standard errors. However, estimates of the variance components, as well as standard errors of the constant, were found to be biased.
منابع مشابه
How large are the consequences of covariate imbalance in cluster randomized trials: a simulation study with a continuous outcome and a binary covariate at the cluster level
BACKGROUND The number of clusters in a cluster randomized trial is often low. It is therefore likely random assignment of clusters to treatment conditions results in covariate imbalance. There are no studies that quantify the consequences of covariate imbalance in cluster randomized trials on parameter and standard error bias and on power to detect treatment effects. METHODS The consequences ...
متن کاملMissing continuous outcomes under covariate dependent missingness in cluster randomised trials
Attrition is a common occurrence in cluster randomised trials which leads to missing outcome data. Two approaches for analysing such trials are cluster-level analysis and individual-level analysis. This paper compares the performance of unadjusted cluster-level analysis, baseline covariate adjusted cluster-level analysis and linear mixed model analysis, under baseline covariate dependent missin...
متن کاملUsing audit information to adjust parameter estimates for data errors in clinical trials.
BACKGROUND Audits are often performed to assess the quality of clinical trial data, but beyond detecting fraud or sloppiness, the audit data are generally ignored. In an earlier study, using data from a nonrandomized study, Shepherd and Yu developed statistical methods to incorporate audit results into study estimates and demonstrated that audit data could be used to eliminate bias. PURPOSE I...
متن کاملComparing methods to estimate treatment effects on a continuous outcome in multicentre randomized controlled trials: A simulation study
BACKGROUND Multicentre randomized controlled trials (RCTs) routinely use randomization and analysis stratified by centre to control for differences between centres and to improve precision. No consensus has been reached on how to best analyze correlated continuous outcomes in such settings. Our objective was to investigate the properties of commonly used statistical models at various levels of ...
متن کاملUsing Randomization Tests to Preserve Type I Error With Response-Adaptive and Covariate-Adaptive Randomization.
We demonstrate that clinical trials using response adaptive randomized treatment assignment rules are subject to substantial bias if there are time trends in unknown prognostic factors and standard methods of analysis are used. We develop a general class of randomization tests based on generating the null distribution of a general test statistic by repeating the adaptive randomized treatment as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 43 شماره
صفحات -
تاریخ انتشار 2011